
Fully Distributed Scrum
Linear Scalability of Production between San Francisco and India

Jeff Sutherland, Ph.D.
Scrum Training Institute

Boston, USA
jeff@scruminc.com

Guido Schoonheim
Xebia B.V.

Hilversum, The Netherlands
gschoonheim@xebia.com

N. Kumar, V. Pandey, S. Vishal
Xebia IT Architects India P.L.

Gurgaon, India
nkumar@xebia.com

Abstract—The Scrum software development framework

was designed for the hyperproductive state where productivity
increases by 5-10 times over waterfall teams and many co-
located teams have achieved this effect. In 2006, Xebia (The
Netherlands) started localized projects with half Dutch and
half Indian team members. After establishing a localized
velocity of five times their waterfall competitors on the same
project, they moved the Indian members of the team to India
and showed stable velocity with fully distributed teams. The
ability to achieve hyperproductivity with distributed,
outsourced teams was shown to be a repeatable process and a
fully distributed model is now the recommended standard
when organizations have disciplined Scrum teams with full
implementation of XP engineering practices inside the Scrum.

Previous studies used overlapping time zones to ease
communication and create a single distributed team. The goal
of this report is to go one step further and show the same
results with team members separated by the 12.5 hour time
difference between India and San Francisco. If Scrum works
without overlapping time zones then applying it to the
mainstream offshoring practice in North America will be
possible. In 2008, Xebia India started engagements with
partners like TBD.com, a social networking site in San
Francisco. TBD has an existing core team of developers doing
Scrum with an established local velocity. Adding Xebia India
developers to the San Francisco team with a Fully Distributed
Scrum model achieved linear scalability with a globally
distributed outsourced team.

Keywords-scrum; distributed; outsource

I. INTRODUCTION
Co-located teams are more productive than distributed

teams, often doubling productivity over teams distributed
within the same building [1]. Loss of productivity increases
with globally distributed teams, with outsourced distributed
teams, and when scaling the size of teams.

“If there are n workers on a project, there are (n2-n)/2
interfaces across which there may be communication, and
there are potentially almost 2n teams within which
coordination must occur. The purpose of organization is to
reduce the amount of communication and coordination
necessary; hence organization is a radical attack on the
communication problem.” Fred Brooks [2]

Brooks asserts that adding more people to a late project
just makes it even later because of these communication
effects and because productivity per developer always

decreases on waterfall projects when team size increases.
Historical attempts of a “radical attack” on the
communication problem have universally failed.

Coplien proved in hundreds of case studies during the
Bell Labs Pasteur Project that “communication saturation” is
directly correlated with high productivity in software
development. Face to face communication in a cross-
functional team can increase productivity 50 times over
waterfall teams [3]. His studies led the first Scrum team to
implement daily meetings and performance over 20 times
average waterfall performance was achieved with some
teams [4]. The “radical attack” of Scrum on the
communication problem works for co-located teams, but can
it work for distributed teams?

This paper documents a model for producing distributed
and offshored team velocity that is equal to co-located
velocity of a single team with a 12.5 hour time zone
difference. The model is repeatable and is recommended for
teams that can execute a high performance Scrum
implementation with XP engineering practices inside.

II. CHALLENGES IN OFFSHORE OUTSOURCING
U.S., European, or Japanese companies often outsource

software development to Eastern Europe, Russia, or the Far
East. The three key advantages that offshoring strives to
achieve are (1) lower costs of labor, (2) capture talent not
available locally, and (3) increase and decrease project size
without layoffs.

Offshore costs are typically about 30% of onshore costs
per developer hours (ignoring communication overhead
which doubles costs on average). Xebia onshore teams run at
5 times the velocity of a waterfall team. Offshoring to a
waterfall team could raise the cost of a project by 150% due
to low velocity of waterfall teams.

Capturing talent is difficult in India and China as
turnover rates on projects are 30-50% a year. Xebia has
shown that an agile development environment combined
with good management can reduce this turnover rate to less
than 5%.

Decreasing team size offshore with typical distributed
team models results in loss of critical knowledge. Fear of this
effect often causes vendor lock in. The fully distributed
model retains all knowledge onshore as team knowledge
resides in all locations. Thus the benefits claimed for
offshoring are actually achievable.

III. REGULAR DISTRIBUTED TEAM MODELS
Most offshore development efforts use a degenerative

form of the Isolated Scrums model where outsourced teams
are not cross-functional and not agile. Requirements may be
created in the U.S. and developed in Dubai, or development
may occur in Germany and quality assurance in India.
Typically, cross-cultural communication problems are
compounded by differences in work style in the primary
organization vs. the offshore group. In the worst case, teams
outsourced this way are not using Scrum and their
productivity is typical of waterfall projects further delayed
by cross-continent communications lag time.
Implementations of Scrum in a data rich CMMI Level 5
company simultaneously running waterfall, incremental, and
iterative projects, showed productivity of Scrum teams of at
least double that of waterfall teams, even with CMMI Level
5 reporting overhead [5]. Outsourced teams not using Scrum
will in the best case achieve less than half the velocity of an
onshore site using Scrum assuming equal talent across teams.

Best practice recommended by the Scrum Alliance is a
Distributed Scrum of Scrums model. This model partitions
work across cross-functional, isolated Scrum teams while
eliminating most dependencies between teams. Scrum teams
are linked by a Scrum-of-Scrums where ScrumMasters (team
leaders/project managers) meet regularly across locations.
This encourages communication, cooperation, and cross-
fertilization and may be appropriate for newcomers to agile
development or those who have offshore limitations that
cripple the productivity of the fully distributed model.

IV. FULLY DISTRIBUTED SCRUM MODEL
Fully distributed Scrum teams are cross-functional with

members distributed across geographies. This means that a
single team will have members in multiple locations. A
single team might have four developers onshore and four
developers offshore. These team members share a single
sprint backlog and share code ownership. In the SirsiDynix
case, the Scrum of Scrums was localized with all
ScrumMasters in Utah. At Xebia, ScrumMasters may be in
the onshore or offshore depending on project needs.

Xebia’s Fully Distributed Scrum model has all teams
fully distributed and each team has members in multiple
locations. While this “OneTeam” model might seem to
create communication and coordination burdens, most
communication is handled by following the Scrum cycle.
The daily Scrum meetings actually help to break down
cultural barriers and disparities in work styles while
simultaneously enhancing customer focus and offshore
understanding of customer needs. On enterprise
implementations, it can organize the project into a single
whole with an integrated global code base. Proper
implementation of OneTeam provides location transparency
and performance characteristics similar to hyperproductive
co-located teams.

V. XEBIA TBD.COM CASE STUDY
In previous papers we illustrated the use and performance

of Fully Distributed Scrum [6, 7]. These case studies

concerning Fully Distributed Scrum utilize an overlapping
time zone. Shared time during the workday helps in creating
a OneTeam situation and eases communication. However,
large parts of the offshoring industry do not have this overlap
available. Notably, the United States and India do not have
this overlap.

In order to demonstrate the positive effect of Fully
Distributed Scrum on large time difference situations we will
show a project that Xebia India worked on with a company
located in San Francisco.

This company, TBD, maintains a social networking
website, http://www.tbd.com/. Whereas sites like MySpace
and Facebook target a young audience, TBD differentiates
itself by targeting an audience of > 40 years. TBD stands for
‘To Be Determined’, illustrating that life has a lot to offer to
those of higher maturity. On TBD.com people meet online to
discuss topics such as raising teenage children, life
philosophy and work/life balance.

The company standardized development on Scrum in an
early stage and created a live website with an active
community. After this initial product creation TBD wanted
to scale up development for a period of time with an offshore
partner that could match their Scrum process.

Xebia and TBD started with a six week pilot and
continued working together on a successful project for a
period of eight months. After this period the required boost
in functionality was achieved and the economic recession
started. The project was completed to the satisfaction of TBD
and development was reduced again to a small local team.

A. OneTeam engagement model
Central to Xebia’s approach to offshoring is the notion of

distributed teams (OneTeam). A distributed team has team
members on multiple locations where all team members are
committed to the same sprint backlog. TBD and Xebia used
this approach to set up a single distributed team consisting of
TBD engineers in San Francisco and Xebia engineers in New
Delhi.

This setup mixes engineers from two different companies
coming from different cultures separated by a huge time
difference into a single team. While this seems daunting at
first, this OneTeam model actually proves to be essential in
bridging the gap between the United States and India.

B. Quick project setup
A short period of co-location is very useful and

recommended in order to be effective and up to speed as
soon as possible with a distributed project. TBD’s Product
Owner and Scrum Master/Technical Lead traveled to India
and spent two weeks at Xebia India. During this period, the
main objectives were to get to know each other, to setup a
functional work environment, to agree on ways of working,
to transfer knowledge, to share short and medium term
business goals for TBD, and to setup success criteria and
measurements for the collaboration.

Prior to this visit documentation and codebase access
was provided to the Indian team members to have an
overview of the project and thus be able to make best use of

the co-location period. This preparation proved very useful
in achieving the quickest possible startup.

Initially, Xebia India started with three developers,
matching the existing team in San Francisco. The team
shared a common code base repository on both sides, used
the same wiki and Bug Tracking tools, agreed on a common
definition of DONE (see Agile Practices and Tools) and
shared and worked from one Sprint Backlog. The personal
relationships formed during this visit are important to
facilitate easy communication with the Product Owner and
onshore team members.

In order to come to clear working agreements the team
held a ‘Norming and Chartering’ session. This is a Xebia
best practice where very specific agreements are made in the
fields of practices, (coding) conventions, tooling, process,
evaluation & escalation, and anything else that the team
would like to establish.

During the TBD visit, the team immediately started the
first shared iteration. Iteration length in this project was
three weeks. Focus was put on knowledge transfer as the
existing codebase was substantial and functionality often
involved modifications. In order to get the best velocity as
well as maximum knowledge transfer, the Product Owner
selected stories that would facilitate knowledge build-up.
The Indian team members used the presence of TBD staff in
India during the first two weeks of the sprint to complete
these stories and were able to continue with enough
knowledge afterwards. This was also due to their study of
the system and source code prior to the start of the project.
In addition, the Indian team members put in extra work
hours during the initial two weeks to get the most out of the
onsite presence of TBD. Due to these measures the team
velocity doubled immediately when the number of
developers doubled, despite the need for knowledge
transfer.

To evaluate the engagement between TBD and Xebia a
number of points were evaluated every iteration. Velocity
was measured against expected velocity. The capability of
Indian team members to work independently was
subjectively evaluated. New modules and areas that the
Indian team members worked on were judged on quality.
The entire team measured general team dynamics on a
subjective scale and completed a quality questionnaire.
Combined with the more free format retrospective, this gave
very good insight into current progress and into subjective
feelings about the project. This facilitated very open and
direct feedback, leading to better team building.

Scrum Master, Product Owner and testers in this project
were localized in the US with developers spread out over
both locations.

C. Scrum cycle pulls the team together
The most important ingredients for building a team are

communication, shared vision, active participation, shared
ownership and shared goals. The Scrum process is excellent
for providing all of the above if you are in the same team

working off the same sprint backlog. Certain modifications
to the Scrum cycle are necessary in order to achieve the
same feeling of OneTeam when the time difference is so
large (12.5h).

All larger Scrum meetings are shared by the whole team
and done jointly using videoconferencing. This requires
team members on both sides to be flexible in creating
overlapping timeframes for these meetings. In order to
minimize the time required, the Sprint planning is prepared
separately with both sides of the team by the Product
Owner. Sprint planning 2, creating tasks, is performed
jointly after both sides have received explanation of the user
stories. Daily standup meetings are not shared by all team
members as this would put the whole team into permanent
fatigue and seriously impact performance. Instead the
rotating role of proxy was created: someone working odd
hours and attending both standup meetings. The choice was
made to base the proxy in the US and not in India because
of available knowledge. The US proxy could answer many
questions directly. The US proxy shifted part of his work
day to the evening (approx. 8PM) and the India team started
a bit early (approx. 8AM) to create the overlap required for
the standup meetings. Different individuals would take the
proxy role on different days, allowing different people from
both sides to regularly interact directly. Once a week, a fully
shared standup was held in addition to this rhythm to allow
all team members to see each other ‘face to face’ and
exchange first hand information. It was also used for design
discussions between developers from both locations, to get
feedback from testers and to share any new stakeholder
information. This meeting proved essential to bridge any
gaps in terms of information sharing across locations. As
with earlier projects regular videoconferencing aided team
building substantially.

The demo and retrospective are done together with
videoconferencing. At the end of the day team members on
both sides wrote an update on the wiki about what they
accomplished that day and about any current impediments.
This approach was chosen over daily digest mails as it
offers one single location for all updates along with easy
history.

This modified Scrum cycle covers virtually all
communication. It is both the minimally required ceremony
and the most effective way to connect the distributed team
members to form a team. That makes it the best approach to
offshoring currently available.

D. Linear productivity
As sections III and IV explain, traditional outsourcing

using a waterfall approach has proven to be extremely
costly. Fully Distributed Scrum eliminates the usual waste
in communication overhead that traditional offshoring
brings and establishes a strong sense of shared ownership
and clear purpose with full transparency. In short it succeeds
in bringing Fred Brooks definition of a “radical attack” [2]
on the communication problem to distributed development.

The TBD project actually demonstrates a slight increase
in productivity from the first sprint. The Indian team
members are experienced and senior enough to be quickly
up to speed and the technology stack used by TBD is
familiar. Handling knowledge transfer was explained in the
section about quick project startup.

Figure 1 shows the velocity in story points over time
averaged per person. The Indian team members joined in
iteration 41.

Figure 1. Average per person velocity

Iteration 41 has almost double the development capacity
of iteration 40. In iteration 41 a total of 45 story points was
accomplished versus 24 story points in iteration 40. During
this transition the performance per person remains roughly
the same with even a slight increase.

This constant performance afterwards shows linear
scalability, instead of the traditional dip in performance in
offshoring. This linear scalability in performance is similar
to results delivered by good co-located teams.

E. Delivering high quality
Measuring of the amount of issues found shows

consistent quality in development after scaling up. At the
beginning of the project an audit of the existing codebase
was done. Areas prone to break during refactoring were
identified and addressed. The Indian team members had
previously worked on large hyperproductive enterprise
projects and had a number of valuable suggestions to
improve upon technical quality and definition of done.

One major step taken after initial setup is better
integration of testing work into the sprint. Using previous
experiences of the Indian team members, the time to go to
production after release was reduced from a week to a single
day. This greatly improved the flow of development.

Starting from the second sprint, the Indian team members
managed to pick up substantial functionality on their own,
after three months they were fully knowledgeable, and
during the summer holidays they took over development
and support all together. Refactoring initiated by the Indian
team members included introducing new patterns into the
architecture.

F. Agile practices and tools used
The TBD project adopted the full set of XP practices.

During the engagement, the team increased the rigorousness
with which XP practices were followed, inspired by the
previous experience of the Indian team members.

The shared definition of done included items such as
proper measured test coverage, passing of all previous
existing tests, verifying continuous integration, testing by
the testers on the team, and updating project status
information.

The San Francisco team members had to adjust their way
of working to allow smoother work in a distributed manner.
Examples are more clearly defined user stories, a defined
ready state for requirements to be allowed into the sprint,
and clearer definition of done. These changes helped to ease
development and testing and helped the Product Owner to
more accurately translate business goals into user stories.

Digital online tooling was used for collaboration. The
product backlog and sprint backlog were managed with a
digital Scrum tool (Pivotal Tracker). A separate issue
tracker (JIRA) was used for managing bugs. The team relied
heavily on a wiki (Confluence) for requirements
specification and system documentation as well as team
information like status updates. Videoconferencing was
done using Skype with Adobe Acrobat Connect for desktop
sharing.

G. Business case involvement
Xebia had the opportunity to present the project to Lean

& Agile Software Development authorities Tom and Mary
Poppendieck [8] who visited the Xebia offices in India.
They had a number of valuable suggestions in the area of
business case involvement.

As a result, the team members in India broadened their
focus to include the business impact of the features they
delivered. The sprint demos were initially localized in the
US. This was changed to provide the Indian team members
with maximum direct feedback on their work. The Product
Owner decided to share progress reports to TBD
management with the whole team. This added strongly to
the OneTeam feeling.

TBD shared usage information from Google Analytics
and feedback from power user panels with the team
members to give real time insight into the progression of
their KPI’s. The team members all used accounts on the live
system to double check their features in production and to
validate the user experience. Once they got more involved
in the actual business, they started researching competitors
and could suggest functional improvements. This resulted in
a number of significant changes to the site, such as a revamp
of the Friend Finder / Invitation functionality, which is
essential to the growth of a social networking site.

Success for TBD is measured in an expanding user base
and increased usage. Good product ownership is geared
towards increasing this value. Figures 2 and 3 show that

during the time of the engagement, both number of users
and page views per user visit quadrupled.

Figure 2. Member growth during TBD project

Figure 3. Usage growth per visit during project

H. Customer success factors
The main driver for TBD to engage in offshoring was

cost savings. As productivity was equal to local productivity
with the same quality but at a lower cost this benefit was
accomplished. The second benefit is the availability of
talented and skilled knowledge workers. TBD had access to
the full talent pool of Xebia for consulting and added
services such as Agile consultancy and graphic design.
Thirdly, due to the time difference it was possible to set up
24/7 support staffed by the development team without much
overhead. During the US nighttime the support calls were
routed to the Indian developers and vice versa.

Finally, flexibility with knowledge retention was a key
benefit. At the end of the project, TBD was able to
downscale without loosing any crucial knowledge of the

system. Flexibility in sourcing is actually a recurring main
driver for Xebia’s clients to engage in offshoring.

This shows all key advantages of offshoring were
achieved.

I. Project challenges
A number of difficulties remained throughout the project

and were not completely overcome. Firstly, distributed
demo’s were at times hard to organize since they involved
many business stakeholders that were not always available
in the early morning or later in the evening, creating
logistical issues. Secondly, some activities like shared
distributed design and modeling were limited as the team
had very limited overlapping time. Thirdly, due to budget
constraints no travel was possible after the initial setup. This
meant that the offsite team members did not experience the
environment and context of the onsite team members.
Traveling during the project is a Xebia best practice: It
strengthens personal relations and context awareness. And
finally, some work simply had to be done locally. For
instance, performance tuning involved cooperation of a US
based hosting party and had to be done locally, although a
specialist consultant from Xebia was able to add expertise.
For testing the resources were located in the US. At times
this was not ideal due to the time difference delaying
feedback.

VI. CONCLUSIONS
While previous publications and a wide range of Xebia

projects have shown hyperproductivity in distributed teams,
this is the first documented case dealing with maximum
time difference. In summary, it is proved possible to create a
distributed/outsourced Scrum with the same velocity and
quality as a co-located team without overlapping time zones
using talent from two different companies.

The OneTeam strategy along with the modification to
the Scrum cycle described in this paper lowers costs,
captures offshore talent, and has the ability to increase and
decrease team size without loss of knowledge. TBD’s ability
to downscale at the end of the project demonstrates this
ability.

Fully Distributed Scrum is the recommended strategy to
unlock the full potential of Indian offshoring for the US
market for teams capable of fully implementing the
practices of Scrum and XP.

VII. REFERENCES
[1] S. Teasley, L. Covi, M. S. Krishnan, and J. S. Olson, "How Does

Radical Collocation Help a Team Succeed?," in CSCW'00
Philadelphia, PA: ACM, 2000, pp. 339-346.

[2] F. P. Brooks, The Mythical Man Month: Essays on Software
Engineering: Addison-Wesley, 1995.

[3] J. O. Coplien, "Borland Software Craftsmanship: A New Look at
Process, Quality and Productivity," in 5th Annual Borland
International Conference, Orlando, FL, 1994.

[4] J. Sutherland, "Agile Can Scale: Inventing and Reinventing Scrum in
Five Companies," Cutter IT Journal, vol. 14, pp. 5-11, 2001.

[5] J. Sutherland, C. Jacobson, and K. Johnson, "Scrum and CMMI Level
5: A Magic Potion for Code Warriors!," in Agile 2007, Washington,
D.C., 2007.

[6] J. Sutherland, G. Schoonheim, and M. Rijk, "Fully Distributed
Scrum: The Secret Sauce for Hyperproductive Offshored
Development Teams," in Agile 2008, Toronto, 2008.

[7] J. Sutherland, A. Viktorov, and J. Blount, "Adaptive Engineering of
Large Software Projects with Distributed/Outsourced Teams," in
International Conference on Complex Systems Boston, MA, USA,
2006.

[8] M. Poppendieck and T. Poppendieck, Lean Software Development:
An Implementation Guide: Addison-Wesley, 2006.

