
Teams that Finish Early Accelerate Faster: A Pattern Language for High

Performing Scrum Teams

 Jeff Sutherland Neil Harrison Joel Riddle

 Scrum Inc. Utah Valley University Scrum Inc.

 jeff@scruminc.com Neil.Harrison@uvu.edu joel@scruminc.com

Abstract
Recent surveys show that 42% of Agile projects

are successful. While this is three times better than

traditional projects, 49% of Agile projects are late or

over budget and 9% are total failures [1]. There is a

better way to help Agile teams to implement Scrum.

At the 2013 Scrum PLoP Conference held in

Tisvildeleje, Denmark thought leaders in the Agile

community reviewed a set of Scrum Patterns that

together generate a high performing Scrum team.

During this editorial process it became apparent that

a combination of nine Patterns in conjunction with

the Scrum framework could help teams achieve

Hyper-Productivity, more than a 400% increase in

velocity over a team’s initial velocity.

1. Introduction

Many years before the writing of the Agile

Manifesto [2], Mike Beedle was influenced by the

online description of Scrum [3]. He then

implemented the process in his company, and led the

effort to drive Scrum through the Pattern Languages

of Programming Design conferences. The result was

Scrum: A Pattern Language for Hyperproductive

Software Development, a groundbreaking work that

established a pattern foundation for Scrum, the most

widely deployed Agile processes in the world [4].

Recent work by Jim Coplien shows that Scrum is

deceptively simple while compressing a complex

array of organizational patterns [5]. While Scrum

incorporates at least 33 organizational patterns, it can

be superficially explained in just 2 minutes.

One of Scrum's design goals was to encapsulate

best practices from 40 years of software development

into a process that was simple enough for the average

developer to use with less than 2 days of startup time.

Coplien’s analysis [6] indicates that this goal was

accomplished.

In recent years the Scrum Pattern

Community has written a comprehensive set of

patterns for Scrum [7] that allow teams to try proven

approaches that have worked in many companies.

While the Scrum Guide [8] provides the basic rules

of Scrum, the patterns give teams the tools to solve

problems when implementing Scrum in specific

contexts.

2. Hyper-Productive Software

Development

Only a small percentage of Scrum teams achieve

Scrum’s design goal of five to 10 times traditional

project productivity with a corresponding increase in

quality. Some of these Hyper-Productive teams

include Mike Beedle’s [3] and Jeff Sutherland’s

companies [9], as well as organizations in the U.S.

[10], Russia [11], the Netherlands and India [12], and

from Software Productivity Research data on agile

teams [13].

Systematic, a CMMI Level 5 company in

Denmark, has shown how to systematically produce a

Hyper-Productive team by focusing on a high

standard for “Done” at the end of a sprint and

“Ready” at the beginning of a sprint [14]. They

noticed that it was impossible to achieve Hyper-

Productivity if they changed members of the Scrum

team at the beginning of every project, showing that

the pattern Stable Teams [5] is a requirement for

high performance. Similar results were observed

consistently for a style of Scrum called “Shock

Therapy” in the U.S. and Europe [15].

The Systematic and Shock Therapy approaches

to consistently generating a Hyper-Productive team

have been too disciplined or too aggressive for most

teams to implement. However, a venture capital

group with over 30 companies suggested a better

approach. OpenView Venture Partners decided to

implement Scrum internally in 2006 for all

departments in the company [16]. After running

hundreds of sprints with carefully documented

metrics, they discovered that Teams that Finish

Early Accelerate Faster [17]. This insight provided

a way for the average team to approach

Hyperproductivity. If a stable team could accelerate

2014 47th Hawaii International Conference on System Science

978-1-4799-2504-9/14 $31.00 © 2014 IEEE

DOI 10.1109/HICSS.2014.580

4722

faster by finishing early, what other simple steps

could be taken by any team to achieve Scrum: A

Pattern Language for Hyperproductive Software

Development [4]?

3. A Generative Pattern Language for

Hyper-Productivity

A Pattern Language is an attempt to express

deeper wisdom through a set of interconnected

expressions arising from contextual knowledge. It

moves beyond a list of processes, to seek activities or

qualities that repeat across many of those processes,

in an effort to find what works. It is an interconnected

whole, that when applied coherently, creates "the

quality that has no name" (QWAN) [18]. Combining

multiple patterns creates a whole greater than the

sum of the individual patterns.

The investors at OpenView Venture Partners

were surprised when they discovered Teams that

Finish Early Accelerate Faster. They observed that

Scrum is not about velocity, it is about acceleration.

An accelerating team will soon outperform a team

with flat-lined velocity.

This pattern seemed counterintuitive to the

investors, so the authors and others experimented

with it in other companies and found that it

consistently worked. The next question becomes how

to get it to work well enough to generate a Hyper-

Productive team. What set of generative patterns will

feed off one another, generating unexpected side

effects that keep teams accelerating?

Generative patterns work indirectly; they work

on the underlying structure of a problem rather than

attacking the problem directly. Good design patterns

are similar: they encode the deep structure of a

solution and its associated forces, rather than

cataloging a solution [19].

We already knew from the Systematic data [14]

that Stable Teams were necessary for

hyperproductivity. We decided to systematically

investigate every other major problem that blocks a

team from finishing early.

4. The Patterns

A Scrum Pattern is a general reusable solution to

a commonly occurring problem within the Scrum

framework. The structure of Scrum is simple and

designed to help Teams adapt to change as it occurs

but Scrum doesn’t solve every problem. As Scrum

has been implemented and improved upon over time,

a number of practices evolved to address common

pitfalls.

Every year at the Scrum PLoP conference, new

Patterns are proposed and go through a round robin

editorial process by some of the most influential

minds in the Scrum community. Eventually, if the

Pattern is seen as having value, it is approved and

added to the Pattern spreadsheet.

As more and more Patterns emerge, they can be

used together. A subset of the Scrum patterns are the

nine Patterns listed below, which form in essence a

vocabulary of a Pattern Language for Hyper-

Productive Teams.

The Patterns are:

1. Stable Teams

2. Yesterday’s Weather

3. Swarming: One Piece Continuous Flow

4. Interrupt Pattern: Illigitimus Non Interruptus

5. Daily Clean Code

6. Emergency Procedure

7. Scrumming the Scrum

8. Happiness Metric

9. Teams that Finish Early Accelerate Faster

The first two patterns help the team get ready for

a successful sprint. Patterns 3-6 help the team deal

with the most common disruptive problems in a

sprint. Patterns 7-8 will drive a team to the Hyper-

Productive state by causing Pattern 9 to emerge as a

side effect.

5. Patterns that Help Teams Get Ready

Stable Teams: Keep teams stable and avoid

shuffling people between teams. Stable teams tend to

get to know their capacity, which makes it possible

for the business to have some predictability.

The Scrum framework is built around a team of

three to nine members. Research at Harvard

University and elsewhere has shown that the

optimum size is five people [20, 21]. Small teams

keep communication paths simple and allow for

communication saturation, a key to hyper-

productivity [22]. However, just having a small team

doesn’t mean it will be successful. If members are

pulled off the team to work on other projects or are

unable to participate regularly in rituals, the team’s

Velocity will suffer. To solve this problem,

practitioners realized they needed small, stable teams.

At PatientKeeper [23] during 2005-2007 all

teams were Hyper-Productive except an offshore

waterfall team. Careful data collection during this

period showed the onshore teams were 10 times as

productive as the offshore team. A key feature was

the stability of the onshore teams with almost no

changes in team members during this period. We did

4723

discover, however, that adding a new person to the

team about every 6-12 months helped to bring in

fresh ideas.

6. Patterns that Help Teams Finish the

Sprint

Stable teams tend to reach a consistent Velocity,

which helps the Team predict how many Points they

can accomplish, each Sprint. That enables them to

use the first pattern that helps prevent failed Sprints.

Yesterday’s Weather: In most cases, the

number of Estimation Points completed in the last

Sprint is the most reliable predictor of how many

Estimation Points will be completed in the next

Sprint.

Yesterday’s Weather allows teams to build a

more accurate Sprint Backlog, limiting the possibility

of the team ambitiously pulling in too many

Estimation Points and endangering the Sprint. Stable

Teams know their capacity, which enables them to

use Yesterday’s Weather.

Once stable teams have built a realistic Sprint

Backlog using Yesterday’s Weather, they start their

Sprint. They then encounter numerous forces that can

cause a Sprint to fail. The following four Patterns are

designed to address the most common Sprint pitfalls.

Swarming: Focus maximum team effort on one

item in the Sprint Backlog to get it done as soon as

possible. Whoever takes this item is Captain of the

team. Everyone must help the Captain if they can and

no one can interrupt the Captain. As soon as the

Captain is Done, whoever takes responsibility for the

next priority backlog item is the new Captain.

When Teams struggle to finish Sprints, it is

usually because they have too much work in progress

and aren’t swarming on high value Sprint Backlog

items. Swarming helps teams move items to “Done”

quickly, increasing Velocity. Yesterday’s Weather

allows Swarming Teams to increase Velocity because

the team is building a realistic Sprint Backlog.

The next most common problem Scrum teams

face is interrupts to work on the Sprint Backlog.

Many requests come to the team which are not on the

subset of the Product Backlog accepted into the

Sprint. Research at Carnegie Mellon and 20 years of

experience with Scrum teams has shown that teams

that plan for interruptions do significantly better than

teams that do not, even when they experience no

interruptions [24].

Interrupt Pattern: Allot time for interruptions

and do not allow the time to be exceeded. Set up

three simple rules that will cause the company to self-

organize to avoid disrupting production:

1. The team creates a buffer for unexpected items

based on historical data. For example, 30% of

the team's work on the average is caused by

unplanned work coming into the sprint

unexpectedly. If the team velocity averages 60

points, 20 points will be reserved for the

interrupt buffer.

2. All requests must go through the Product

Owner for triage. The Product Owner will give

some items low priority if there is no perceived

value relative to the business plan. Many other

items will be pushed to subsequent Sprints even

if they have immediate value. A few items are

critical and must be done in the current Sprint, so

the Product Owner puts them into the interrupt

buffer.

3. If the buffer starts to overflow, i.e. the Product

Owner puts one point more than the 20 points

allocated to the buffer into the Sprint, the team

must automatically abort, the Sprint must be re-

planned, and management is notified that

delivery dates will slip.

The Interrupt Pattern, like Swarming, allows

teams to finish their Sprints because they have

developed a process to deal with found work.

Examples of how to use these patterns to solve

common problems were found in many of the

OpenView Venture Partners portfolio companies

[16].

Balihoo, a company that automates local

marketing campaigns for companies such as

Wendy’s, Ace Hardware, and New Balance, failed to

deliver half of its planned stories for 18 two-week

sprints in a row. The management was not happy

with their Scrum team.

The first problem addressed was that almost all

stories were open on their Scrum Board every day.

Excessive “work in progress” delays testing and

makes it extremely difficult to get things done in a

Sprint. We fixed that by Swarming, which caused the

whole team to focus on completing a least one story

on the board every day. At the same time we

implemented the Interrupt pattern. All of the next 18

Sprints, were successful, none were aborted, and

velocity more than tripled. The Interrupt pattern

generates a side effect that causes the entire company

to self-organize to avoid sprint aborts. This means

the buffer is never completely used up and teams tend

4724

to finish early and pull forward from the next Sprint’s

backlog. This increases yesterday’s weather and the

team accelerates.

Finishing at least one story every day allowed

the team to focus on the second value in the Agile

Manifesto – working software with no bugs. This

minimizes the amount of undone work at the end of

the sprint and maximizes velocity. All great Scrum

teams implement the Daily Clean Code pattern.

Daily Clean Code: Fix all bugs in less than a

day. Aim to have a completely clean base of code at

the end of every day.

If a Team isn’t creating daily clean code, a lot of

time will be wasted going back to fix bugs. Errors

can be limited by building quality control into the

development process so that issues are discovered

and corrected at the point of origin. Research in

Silicon Valley at Palm, Inc. in 2006, showed that a

bug that is not fixed the same day it is created can

take as much as 24 times longer to correct three

weeks later.

Despite their best efforts, even a great team may

find themselves behind on implementing the Sprint

Backlog with no clear way to complete the Sprint

successfully. In this case, by mid-Sprint they should

execute the Scrum Emergency Procedure.

Emergency Procedure: When high on the

burndown try a technique used routinely by pilots.

When bad things happen, execute the emergency

procedure designed specifically for the problem. Do

not delay execution while trying to figure out what is

wrong or what to do. In a fighter aircraft you could

be dead in less time than it takes to figure out what is

going on. It is the responsibility of the Scrum Master

to make sure the team executes the Scrum Emergency

Procedure, preferably by mid-sprint, when things are

going off track.

Emergency Procedure Steps: (do only as much

as necessary)

1. Change the way the work is done. Do

something different.

2. Get help, usually by offloading backlog to

someone else.

3. Reduce scope

4. Abort the sprint and replan. Inform

management how release dates will be

affected.

7. Getting Hyper-productive

Stable Teams and Yesterday’s Weather set the

team up for success by helping it get in a ready state.

Swarming, the Interrupt Pattern, Daily Clean Code,

and the Emergency Procedure help the Team deal

with Impediments as they arise during the Sprint. The

next three Patterns take advantage of the previous

Patterns and allow the team to attain a Hyper-

Productive state.

Scrumming the Scrum: Identify the single most

important impediment from the previous Sprint

during the Sprint Retrospective and remove it before

the end of the next sprint. To remove the top

impediment, put it in the Sprint Backlog as a user

story with acceptance tests that will determine when

it is Done. Then evaluate the state of the story in

the Sprint Review like any other story.

If the team is able to capitalize on Scrumming the

Scrum they should create at least one process

improvement per sprint. The pattern calls this process

improvement the Kaizen. This contributes to

increasing Velocity. If the team is using Yesterday’s

Weather, than they have a good chance to finish their

sprint early because they will have one less

impediment dragging down their Velocity. (The

Kaizen may not be a direct process improvement. It

may deal with strong personalities, management

impeding the Sprint, or a variety of sticky human

issues. These impediments should be treated like

process improvements and should be resolved as

quickly as possible.)

Happiness Metric: Happiness is one of the best

metrics because it is a predictive indicator. When

people think about how happy they are they are

really projecting out into the future about how they

feel. If they feel the company is in trouble or doing

the wrong thing, they will be unhappy. Or if there is a

major roadblock or frustrating system they have to

deal with, they will be unhappy.

A powerful way to take the pulse of the Team is

by finding out how happy they are. The Scrum

Master asks just 2 questions:

• How happy are you with the company?

• How happy are you with your role?

Team Members are asked to rate their feelings

on these questions on a scale from one to five. These

numbers are kept in a spreadsheet and tracked over

time. If the average changes significantly it’s

important to talk and see how Team happiness can be

improved. By monitoring the team’s happiness, the

Scrum Master can anticipate drops in Velocity and

make adjustments.

4725

Teams That Finish Early, Accelerate Faster:

Teams often take too much work into a Sprint and

cannot finish it. Failure prevents the Team from

improving. Therefore, take less work into a Sprint

(see Yesterday’s Weather for guidance Then

implement the four Patterns that reduce Impediments

within the Sprint, which will systematically deal with

any interruptions and help you finish early. On early

completion pull work from the Product Backlog

which will increase the baseline of Yesterday’s

Weather.

8. Implementation Example

A new Scrum team was started up in 2010 to run

an entire company with one week Sprints. Backlog

was pulled into Sprints based on the average Velocity

for the previous three Sprints. An interrupt buffer was

used to handle unplanned work. The team minimized

work in progress focusing on daily clean completion

of stories. The emergency procedure was used to

handle difficult problems.

The team used the Happiness Metric as a way to

identify and prioritize process improvements. On a

scale of 1-5 they asked (1) how they feel about their

role in the company and (2) how they feel about the

company. They then shared what would make them

feel better. The team used planning poker to estimate

the value of things that would make team members

feel better. The team estimated the value (as opposed

to effort) of backlog items as well. The entire product

backlog was estimated at 50 points of value in an

early Sprint.

“Better user stories” was the top priority

improvement for the team. Removing this

impediment was estimated at over 60 points of value.

The Chief Product Owner wondered if removing that

impediment might double velocity, as the

impediment value was higher than the entire product

backlog value for the sprint.

"Improve User Stories" was put into the Product

Backlog and pulled into the next sprint with a

definition of Done. That definition of Done included

acceptance tests with metrics that were calculated at

the next Sprint Review. They included:

1. How many stories got into the sprint that did

not meet the INVEST criteria (immediately

actionable, negotiable, valuable, estimable, sized to

fit, and testable)?

2. How many times did members of the Team

have to go back to the product owner to clarify a

story during a sprint?

3. How many times did dependencies force a

story into a hold state during a Sprint?

4. How many stories had a process efficiency of

over 50%? (process efficiency = actual work

time/calendar time)

5. How many stories were not clear to the team

members? Measure by number of team members that

complained about a story.

6. How many stories implied technical

implementation rather than clarifying desired user

experience?

7. For how many stories did team members

understand the linkage between the story, the theme

that produced the story, the epic that generated the

theme, and the business need that generated the epic?

This was measured by number of team members

complaining that they did not understand why they

were doing a story.

Resulting Context: While improving the quality of

user stories is never ending, the sprint review

demonstrated significant improvement on this

backlog item as measured by the acceptance tests.

Significant improvement resulted in an increase in

velocity sprint to sprint for three sprints. After

velocity had tripled this impediment fell off the top of

the impediment list and another impediment took its

place.

The graph above is team happiness data for

weekly sprints 140-212 where the solid line is

happiness about the individual's work and the shaded

area is happiness about the company. While

happiness had some normal variation, work on the

Kaizen kept it hovering around 4.

The graph below shows the raw velocity of the

team. In Sprint 86 the team’s size was doubled and

velocity rose to 37 during Sprint 88. In Sprint 89,

“Improve User Stories” was put in the backlog of

each sprint for three sprints. By Sprint 91 velocity

was 111, up 300% from Sprint 88.

Velocity continued to increase for the next two

years using the Scrumming the Scrum pattern and by

Sprint 211 output was up 1200% while the team had

tripled in size. This is the first documented,

sustainable, hyper-productive company (400%

improvement in velocity), as the data include all

4726

work for the entire company. The low points on the

velocity graph are when individuals or the whole

company were on vacation.

Velocity in Points. Source: Scrum Inc. Company Data

2010-2013, weekly sprints 1-214

9. Conclusions

By implementing and executing all nine Patterns,

teams dramatically increase their ability to finish the

Sprint early. This allows them to pull more Product

Backlog Items into the Sprint from the Product

Backlog. This will increase Velocity and establish a

higher baseline for Yesterday’s Weather, setting the

team-up for the next Sprint. Teams that finish early

also tend to have a higher Happiness Metric because

they feel confident about their ability to complete

Sprints. This initiates a virtuous cycle of continuous

improvement eventually leading to Hyper-

Productivity.

The generative nature of these patterns is not

obvious to those who have not tried them.

Unanticipated side effects cause unexpected positive

results. Therefore, it is recommended that all teams

try these patterns, particularly in combination, to see

if they help improve performance, quality, and

happiness of the team.

10. References

[1] K. Schwaber and J. V. Sutherland, Software in 30 days

: how agile managers beat the odds, delight their

customers, and leave competitors in the dust.

Hoboken, N.J.: John Wiley & Sons, Inc., 2012.

[2] M. Fowler and J. Highsmith, "The Agile Manifesto,"

Dr. Dobbs, July 13 2001.

[3] M. Beedle. (2010, June 15). Mike Beedle on the Early

History of Scrum. Available:

http://scrum.jeffsutherland.com/2010/08/mike-beedle-

on-early-history-of-scrum.html

[4] M. Beedle, M. Devos, Y. Sharon, K. Schwaber, and J.

Sutherland, "Scrum: A Pattern Language for

Hyperproductive Software Development," in Pattern

Languages of Program Design. vol. 4, N. Harrison,

Ed., ed Boston: Addison-Wesley, 1999, pp. 637-651.

[5] J. O. Coplien and N. Harrison, Organizational

patterns of agile software development. Upper Saddle

River, NJ: Pearson Prentice Hall, 2005.

[6] G. Bjornvig, J. Coplien, and J. Ostergaard, Scrum

Tuning Using Organizational Patterns: Scrum

Foundation, 2010.

[7] ScrumPloP. (2013). Scrum Pattern Community.

Available: http://scrumplop.org

[8] K. Schwaber and J. Sutherland, "The Scrum Guide:

The Definitive Guide to Scrum, The Rules of the

Game," in Software in 30 Days, ed: John Wiley &

Sons, 2011.

[9] J. Sutherland and K. Schwaber, The Scrum Papers:

Nuts, Bolts, and Origins of an Agile Method. Boston:

Scrum, Inc., 2007.

[10] M. Cohn, User Stories Applied : For Agile Software

Development: Addison-Wesley, 2004.

[11] J. Sutherland, A. Viktorov, J. Blount, and N. Puntikov,

"Distributed Scrum: Agile Project Management with

Outsourced Development Teams," presented at the

HICSS'40, Hawaii International Conference on

Software Systems, Big Island, Hawaii, 2007.

[12] J. Sutherland, G. Schoonheim, and M. Rijk, "Fully

Distributed Scrum: The Secret Sauce for

Hyperproductive Offshored Development Teams," in

Agile 2008, Toronto, 2008.

[13] C. Jones, "Development Practices for Small Software

Applications," Software Productivity Research 2007.

[14] C. R. Jakobsen and J. Sutherland, "Scrum and CMMI

Going from Good to Great," in Agile Conference,

2009. AGILE '09., 2009, pp. 333-337.

[15] J. Sutherland, S. Downey, and B. Granvik, "Shock

Therapy: A Bootstrap for Hyper-Productive Scrum,"

in Agile Conference, 2009. AGILE '09., 2009, pp. 69-

73.

[16] J. Sutherland and I. Altman, "Take No Prisoners: How

a Venture Capital Group Does Scrum," in Agile 2009,

Chicago, 2009.

[17] J. Sutherland. (2013). Teams that Finish Early

Accelerate Faster. Available:

https://sites.google.com/a/scrumplop.org/published-

patterns/retrospective-pattern-language/teams-that-

finish-early-accelerate-faster

[18] P. L. o. G. Process. (2013). What is a Pattern

Language? Available:

http://grouppatternlanguage.org/What_is_a_Pattern_L

anguage

[19] J. Coplien. (1995). Generative Pattern. Available:

http://c2.com/cgi/wiki?GenerativePattern

[20] J. R. Hackman and D. Coutu. (2009) Why Teams

Don't Work. Harvard Business Review.

[21] J. R. Hackman, Leading Teams: Setting the Stage for

Great Performances. Cambridge: Harvard Business

Review Press, 2002.

[22] J. O. Coplien, "Borland Software Craftsmanship: A

New Look at Process, Quality and Productivity," in

5th Annual Borland International Conference,

Orlando, FL, 1994.

[23] J. Sutherland, "Future of Scrum: Parallel Pipelining of

Sprints in Complex Projects," presented at the AGILE

2005 Conference, Denver, CO, 2005.

4727

[24] B. Sullivan and H. Thompson, "Gray Matter: Brain,

Interrupted," in New York Times, ed. New York City:

New York Times Company, 2013.

4728

